
1

Freemium SDK con�guration

Classes and method overview

The following classes and structures are available (in alphabetical order):

RASPDetection;

RASPFacade;

RASPFacadeFactory;

RASPDetection

RaspDetection represents type of tampering which is recognized by SDK. In free version of
SDK only ROOT tampering detection is available:

ROOT – application is running on rooted device;

RASPFacadeFactory

RASPFacadeFactory is a factory class which is used to create instance of RASPFacade . It has
only two methods:

create method – initializes RASPFacadeFactory object;

public enum RASPDetection {

 ROOT

}

public final class RASPFacadeFactory {

 private final Context context;

 public static RASPFacadeFactory create(@NonNull final Context context) {

 return new RASPFacadeFactory(context);

 }

 private RASPFacadeFactory(@NonNull final Context context) {

 this.context = context;

 }

 public RASPFacade createRASPFacade() throws RASPFacadeException {

 return RASPFacade.newInstance(ObjectFactory.create(context));

 }

}

2

createRASPFacade method – initializes RASPFacade object from current
RASPFacadeFactory ;

RASPFacade

RASPFacade is the main entry point for App Protector. It is initialized with RASPFacadeFactory
as mentioned above. After we initialize this class an application can detect ROOT tampering.
RASPFacade contains doDetectOnDemand method:

doDetectOnDemand

doDetectOnDemand method is used for a single on demand App Protector detection.
raspDetections parameter represents types of tampering that will be detected by the SDK in
this single on-demand tampering detection. The method will return detected tampering, or an
empty Set if no tampering is detected.

App Protector SDK sample usage

RASPFacade initialization

Before using any method from RASPFacade instance, it needs to be created and initialized by
using RASPFacadeFactory and its two methods:

create and

createRASPFacade .

Initializing RASPFacade can throw a RASPFacadeExpection if the RASPFacade object is
created in the wrong way, e.g. if the wrong application context was passed to the create
method.

detectOnDemand usage

After RASPFacade has been initialized, the detectOnDemand method can be called at any time.
The method will return detected tampering, or an empty Set if no tampering is detected.

Set<RASPDetection> doDetectOnDemand(Set<RASPDetection> raspDetections);

private void initializeRaspFacade() {

 try {

 raspFacade = RASPFacadeFactory.create(getApplicationContext())

 .createRASPFacade();

 } catch (RASPFacadeException raspFacadeException) {

 // Handle expected error...

 }

}

3

RASPFacade usage

void detectOnDemand() {

 final Set<RASPDetection> detections =

raspFacade.detectOnDemand(EnumSet.of(RASPDetection.ROOT));

 // Handle detected tamperings...

}

private void dummyRASPFacadeUsage() {

 try {

 initializeRaspFacade();

 detectOnDemand();

 } catch (final RASPFacadeException raspFacadeException) {

 // Handle expected error...

 }

}

